

Corona - lessons learned

Petra Gastmeier

Institut für Hygiene, Charité – Universitätsmedizin Berlin

SARS-CoV-2 ist ein besonderes Virus im Hinblick auf die Infektionsprävention im Krankenhaus

1. Die Patienten sind infektiös bevor die Symptome ausbrechen, viele sind auch völlig asymptomatisch

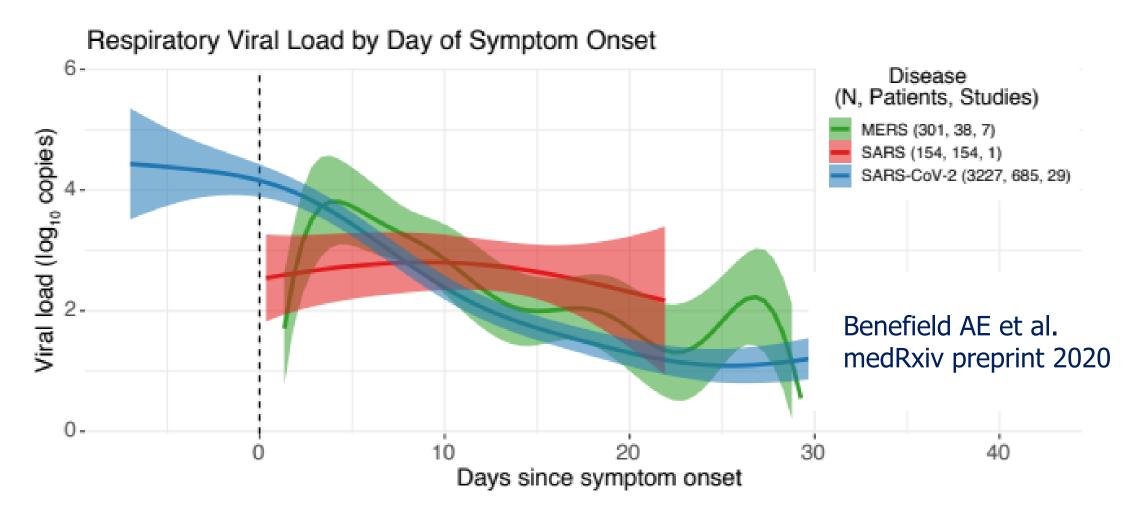
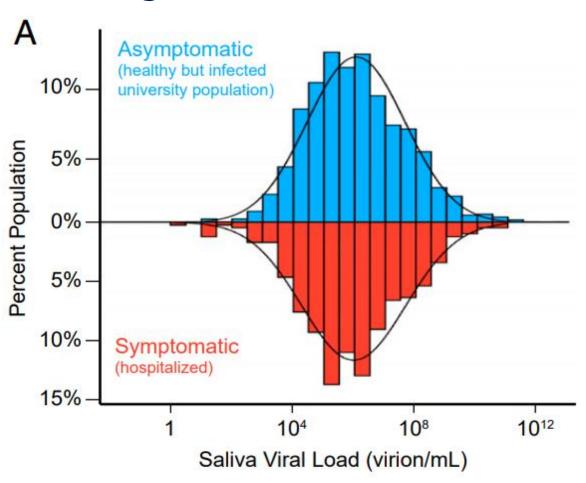


Figure 2: SARS-CoV-2, MERS-CoV, and SARS-CoV viral loads over time. Figure shows estimates of the three pathogen viral loads over time from the adjusted GAM model.

1. Die Patienten sind infektiös bevor die Symptome ausbrechen, viele sind auch völlig asymptomatisch

Just 2% of SARS-CoV-2—positive individuals carry 90% of the virus circulating in communities

```
Qing Yang<sup>a,b</sup>, Tassa K. Saldi<sup>a</sup>, Patrick K. Gonzales<sup>a</sup>, Erika Lasda<sup>a</sup>, Carolyn J. Decker<sup>c,d</sup>, Kimngan L. Tat<sup>a</sup>, Morgan R. Fink<sup>a</sup>, Cole R. Hager<sup>a</sup>, Jack C. Davis<sup>a</sup>, Christopher D. Ozeroff<sup>a</sup>, Denise Muhlrad<sup>c,d</sup>, Stephen K. Clark<sup>a,e</sup>, Will T. Fattor<sup>a</sup>, Nicholas R. Meyerson<sup>a,e</sup>, Camille L. Paige<sup>a,e</sup>, Alison R. Gilchrist<sup>a,b</sup>, Arturo Barbachano-Guerrero<sup>a</sup>, Emma R. Worden-Sapper<sup>a,b</sup>, Sharon S. Wu<sup>a,b,f</sup>, Gloria R. Brisson<sup>9</sup>, Matthew B. McQueen<sup>h</sup>, Robin D. Dowell<sup>a,b,i</sup>, Leslie Leinwand<sup>a,b</sup>, Roy Parker<sup>a,c,d,1</sup>, and Sara L. Sawyer<sup>a,b,1</sup>
```


"BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303; "Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303; "Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303; "Darwin Biosciences Inc., Boulder, CO 80303; "Interdisciplinary Quantitative Biology Program, University of Colorado Boulder, CO 80303; "Wardenburg Health Center, University of Colorado Boulder, Boulder, CO 80303; "Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Boulder, Boulder, CO 80303; and "Department of Colorado Boulder, Bo

- Daten aus dem Herbst 2020 aus der University of Colorado Boulder
- > 72 500 Speichel-Proben auf SARS-CoV-2 getestet (PCR)
- Assoziation der Befunde mit Information über die Existenz von Befunden am Tag der Diagnostik

Yanga et al. PNAS May 10, 2021;118 (No. 21 e2104547118).

1. Die Patienten sind infektiös bevor die Symptome ausbrechen, viele sind auch völlig asymptomatisch

Verteilung der Viruslast

= ähnlich bei asymptomatischen und symptomatischen Patienten

Yanga et al. PNAS. 2021;118 (No. 21 e2104547118).

1. Die Patienten sind infektiös bevor die Symptome ausbrechen, viele sind auch völlig asymptomatisch

Großer Unterschied im Hinblick auf Präventionsmaßnahmen im Vergleich mit anderen Infektionserkrankungen

- -> jeder Patient kann mit SARS-CoV-2 infiziert sein
- -> Präventionsmaßnahmen müssen bei allen Patienten angewendet werden und nicht nur bei Infizierten

SARS-CoV-2 ist ein besonderes Virus im Hinblick auf die Infektionsprävention im Krankenhaus

- 1. Die Patienten sind infektiös bevor die Symptome ausbrechen, viele sind auch völlig asymptomatisch
- 2. Die Mitarbeiter haben deshalb eine relevante Rolle als Infektionsquelle

Original Investigation | Infectious Diseases

Risk Factors Associated With SARS-CoV-2 Seropositivity Among US Health Care Personnel

Jesse T. Jacob, MD; Julia M. Baker, PhD; Scott K. Fridkin, MD; Benjamin A. Lopman, PhD; James P. Steinberg, MD; Robert H. Christenson, PhD; Brent King, MD; Surbhi Leekha, MBBS; Lyndsay M. O'Hara, PhD; Peter Rock, MD, MBA; Gregory M. Schrank, MD; Mary K. Hayden, MD; Bala Hota, MD, MPH; Michael Y. Lin, MD, MPH; Brian D. Stein, MD, MS; Patrizio Caturegli, MD; Aaron M. Milstone, MD, MHS; Clare Rock, MD, MS; Annie Voskertchian, MPH; Sujan C. Reddy, MD; Anthony D. Harris, MD

- Querschnittstudie bei Mitarbeitern in 4 Unikliniken
- Virusdiagnostik-Daten und Fragebögen über Exposition in der Community und am Arbeitsplatz

Jacob et al. JAMA Network Open 2021 Mar 10; 4 (3): e211283

Ergebnisse

- Daten von 24 749 Mitarbeitern
- 50,2% Kontakt zu COVID-10-Patienten am Arbeitsplatz
- Seropositivität: 4.4%
- Community COVID-19-Kontakt und hohe Inzidenz in der Community mit SARS-CoV-2-Nachweis assoziiert Adj. OR für Kontakt in der Community = 3.5 (95%CI 2.9-4.1)
- keine Arbeitsplatzfaktoren assoziiert mit SARS-CoV-2-Positivität (Rolle in der Pflege, Notaufnahme, Station mit COVID-19-Patienten)

Schlussfolgerungen der Autoren

- Exposition in der Community war mit SARS-CoV-2 Positivität assoziiert
- Arbeitsplatzfaktoren dagegen nicht
- Die Infektionspräventionsmaßnahmen am Arbeitsplatz sind effektiv, um Infektionen vom Patienten auf die Mitarbeiter zu übertragen

Jacob et al. JAMA Network Open 2021; Mar 10; 4 (3): e211283

Schneider et al.

Antimicrob Resist Infect Control (2020) 9:192

https://doi.org/10.1186/s13756-020-00848-w

Antimicrobial Resistance and Infection Control

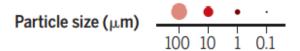
RESEARCH Open Access

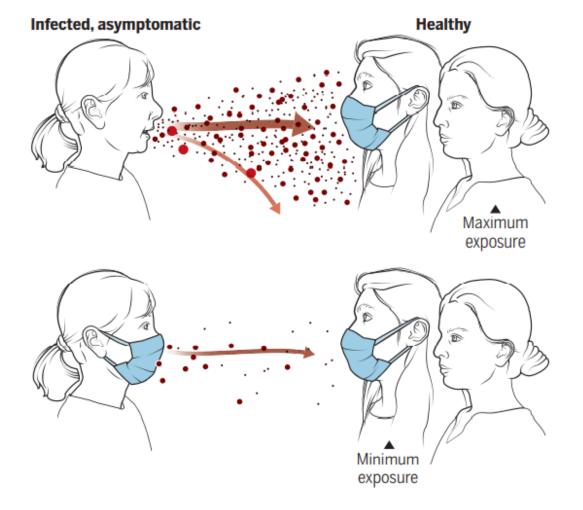
SARS-Coronavirus-2 cases in healthcare workers may not regularly originate from patient care: lessons from a university hospital on the underestimated risk of healthcare worker to healthcare worker transmission

Sandra Schneider¹, Brar Piening¹, Pauline Assina Nouri-Pasovsky¹, Anne Caroline Krüger², Petra Gastmeier¹ and Seven Johannes Sam Aghdassi^{1*}

SARS-CoV-2 ist ein besonderes Virus im Hinblick auf die Infektionsprävention im Krankenhaus

- 1. Die Patienten sind infektiös bevor die Symptome ausbrechen, viele sind auch völlig asymptomatisch
- 2. Die Mitarbeiter haben deshalb eine relevante Rolle als Infektionsquelle
- 3. Der aerogene Übertragungsweg hat bisher im Krankenhaus kaum eine Rolle gespielt, wir waren nicht darauf eingestellt.


3. Der aerogene Übertragungsweg hat bisher im Krankenhaus kaum eine Rolle gespielt, wir waren nicht darauf eingestellt.


Klassifikation vor COVID-19

KONTAKT- ÜBERTRAGUNG	Infektiöse Durchfallerkrankungen, C.difficile- Enteritis multiresistente Erreger: MRSA, VRE, ESBL			
TRÖPFCHEN- ÜBERTRAGUNG (Partikel >5 μm)	Meningokokken, Pneumokokken, Pertussis, Diphtherie, Influenza, Mumps, Röteln			
LUFTGETRAGENE ÜBERTRAGUNG (Partikel <5 μm)	Tuberkulose Masern, Varizellen			

Masks reduce airborne transmission

Infectious aerosol particles can be released during breathing and speaking by asymptomatic infected individuals. No masking maximizes exposure, whereas universal masking results in the least exposure.

Eigenschutz

Fremdschutz

Prather et al. Science 10.1126/science.abc6197 (2020)

Facial Hairstyles and Filtering Facepiece Respirators

Intended for workers who wear tight-fitting respirators

[&]quot;If your respirator has an exhalation valve, some of these styles may interfere with the valve working properly if the facial hair comes in contact with it.

https://www.osha.gov/pls/oshaweb/owod/sp.show_document?p_table=standards&p_id=12716 Further Reading: NIOSH Respirator Trusted-Source Webpage

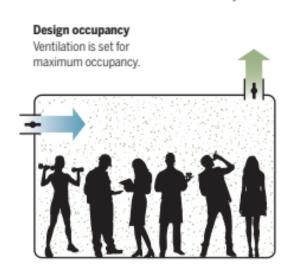
https://www.cdc.gov/niosh/npptl/topics/respirators/disp_part/respsource3fittest.html

This graphic may not include all types of facial hairstyles. For any style, hair should not cross under the respirator sealing surface. Source: OSHA Respiratory Protection Standard

3. Der aerogene Übertragungsweg hat bisher im Krankenhaus kaum eine Rolle gespielt, wir waren nicht darauf eingestellt.

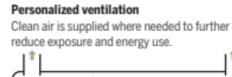
POLICY FORUM

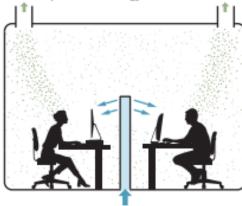
INFECTIOUS DISEASE

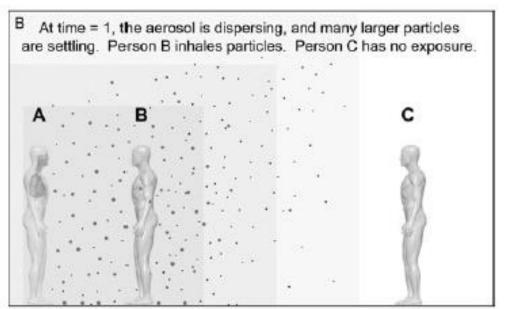

A paradigm shift to combat indoor respiratory infection

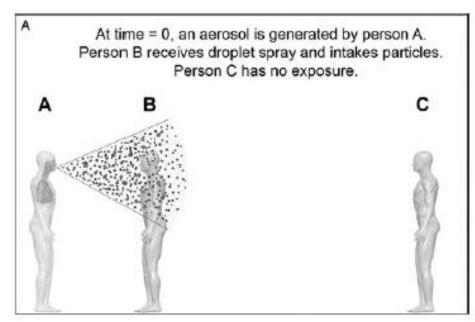
Building ventilation systems must get much better

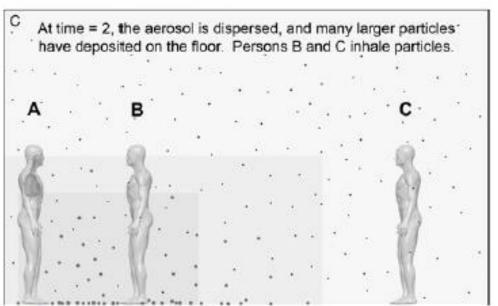
By Lidia Morawska, Joseph Allen, William Bahnfleth, Philomena M. Bluyssen, Atze Boerstra, Giorgio Buonanno, Junji Cao, Stephanie J. Dancer, Andres Floto, Francesco Franchimon, Trisha Greenhalgh, Charles Haworth, Jaap Hogeling, Christina Isaxon, Jose L. Jimenez, Jarek Kurnitski, Yuguo Li, Marcel Loomans, Guy Marks, Linsey C. Marr, Livio Mazzarella, Arsen Krikor Melikov, Shelly Miller, Donald K. Milton, William Nazaroff, Peter V. Nielsen, Catherine Noakes, Jordan Peccia, Kim Prather, Xavier Querol, Chandra Sekhar, Olli Seppänen, Shin-ichi Tanabe, Julian W. Tang, Raymond Tellier, Kwok Wai Tham, Pawel Wargocki, Aneta Wierzbicka, Maosheng Yao


Flexible ventilation systems, dependent on the building's purpose


Ventilation airflow rates must be controlled by the number of occupants in the space and their activity.


Improved air distribution Different system designs can decrease exposure and save energy.




Morawska et al. Science 2021; 372:689-91

SARS-CoV-2 im Krankenhaus

Fokus auf das Fernfeld!

Jones et al. J Occupational & Environmental Med; 2015; 57: 501-08

Fernfeld

FIGURE 1. Schematic of aerosol emission and dispersion over time. Made by Carlyn Iverson, used with permission from the Center for Infectious Disease Research and Policy.

Zusammenspiel der Präventionsmaßnahmen

 Inzwischen gute Evidenz für Effektivität verschiedener Einzelmaßnahmen

Aber:

- Effektivität von einzelnen Maßnahmen im Vergleich zu anderen?
- Effektivität in der Kombination der Maßnahmen?

Kooperation mit TU Berlin

```
SARS-CoV-2·Aerosol·Transmission·Indoors:·A·
Closer·Look·at·Viral·Load·And·Infectivity,·The·
Efficiency of Preventive Measures and a Simple
Approach · for · Practical · Recommendations · ¶
Martin Kriegel<sup>1</sup>, Anne Hartmann<sup>1</sup>, Udo Buchholz<sup>2</sup>, Janna Seifried<sup>2</sup>, Petra Gastmeier<sup>3</sup>.
Technical University of Berlin, Hermann-Rietschel-Institut
2 Robert-Koch-Institute, Department for Infectious Disease Epidemiology ¶
<sup>3</sup>Charité-University Medicine Berlin, Institute for Hygiene and Environmental Medicine¶
```

Ziel

- Ermittlung der wahrscheinlichen Viruslast der Infektionsquelle (Indexpatient) zum Zeitpunkt der Transmission in gut untersuchten Ausbrüchen
- Prädiktion der "Probable Situational Attack Rate (PAR $_{\rm s}$) in einer Personengruppe im Raum durch die Aerosol-Emission eines Indexpatienten

Effect of Route of Inoculation on Experimental Respiratory Viral Disease in Volunteers and Evidence for Airborne Transmission

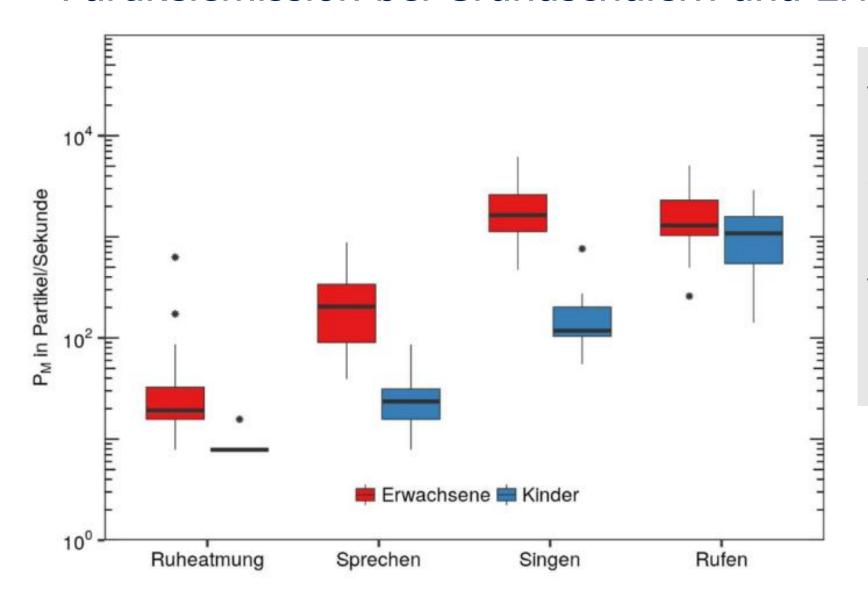
ROBERT B. COUCH,¹ THOMAS R. CATE,² R. GORDON DOUGLAS, JR.,¹ PETER J. GERONE, AND VERNON KNIGHT¹

Laboratory of Clinical Investigations, National Institute of Allergy and Infectious Diseases, U.S. Public Health Service, Bethesda, Maryland, and U.S. Army Biological Laboratories, Fort Detrick, Frederick, Maryland

Table 6. Clinical response of volunteers to inoculation with rhinovirus NIH 1734

	No. of infected		Illness		
Inoculation method	volun- teers	No. ill	URI I	URI- LRIª	LRI
Coarse spray and nose					
drops	48	43	41	2	0
Aerosol, 0.3 to 2.5μ particles	41	33	23	5	5

^a Upper and lower respiratory tract illness.

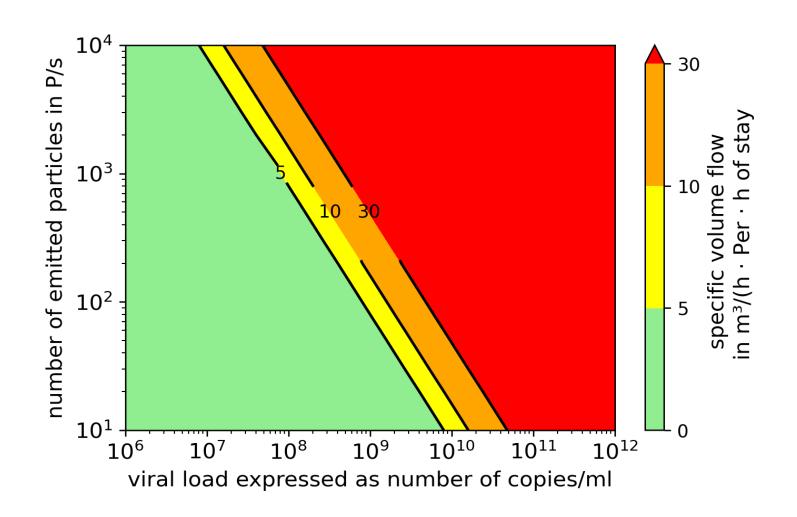

Versuche an Gefängnisinsassen

Couch et al. Bacteriological Reviews 1966

Welche Informationen benötigt man für eine Risikoabschätzung und zur Einleitung geeigneter Präventionsmaßnahmen? (Fernfeld)

- Wie viele Viren sind notwendig um eine Infektion auszulösen?
- Wie viele Viren befinden sich auf den Partikeln?
- Depositions- und Inaktivierungsrate der Viren
- Luftwechselraten in verschiedenen Räumen
- Personenanzahl in den Räumen und Aufenthaltszeit
- Emissionsraten in Abhängigkeit von der Tätigkeit
- Maskeneffektivität
- Menge der inhalierten Viren in Abhängigkeit von der Tätigkeit

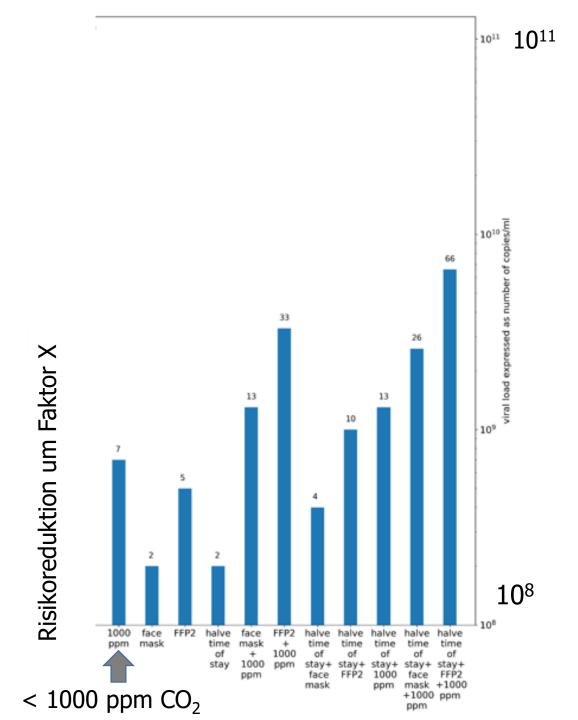
Partikelemission bei Grundschülern und Erwachsenen



Kleine Partikel: bleiben länger in der Luft, tragen nicht alle ein Virus

Große Partikel:
höhere
Wahrscheinlichkeit,
dass sie ein Virus tragen

Mürbe, Kriegel et al. PLOS ONE 2021


Spezifischer Volumenfluss in Abhängigkeit von der Menge emittierter Partikel und der Viruslast, um die Menge der neu Infizierten ≤1 zu halten

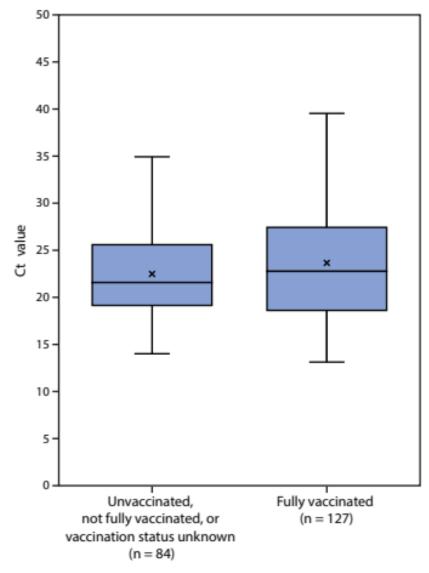
Grün =
gut erreichbar in den meisten
Räumen bei normaler Aufenthaltszeit

Gelb, Orange = kurze Aufenthaltszeiten oder andere Maßnahmen notwendig, um die Anzahl der neu Infizierten < 1 zu halten

Rot = die notwendigen Volumenströme können in Räumen mit normaler Belüftung nicht erreicht werden

Einfluss verschiedener Präventionsmaßnahmen auf das Risiko der Entwicklung eines Ausbruchs

- Die Präventionsmaßnahmen (mehr Belüftung, Masken, verkürzte Aufenthaltsdauer) haben größenordnungsmäßig einen vergleichbaren Effekt
- Gute Belüftung: Reduktion von 4000 ppm
 CO₂-Konzentraion auf 1000 ppm
 -> Reduktion auf 1/7 Risiko
- Bei sehr hoher Konzentration hilft auch die Kombination von allem nicht!
- Der Virus-assoziierte Faktor variiert um den Faktor 1000 und ist dominant! (VOCs)


Morbidity and Mortality Weekly Report

Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings — Barnstable County, Massachusetts, July 2021

Catherine M. Brown, DVM¹; Johanna Vostok, MPH¹; Hillary Johnson, MHS¹; Meagan Burns, MPH¹; Radhika Gharpure, DVM²; Samira Sami, DrPH²; Rebecca T. Sabo, MPH²; Noemi Hall, PhD²; Anne Foreman, PhD²; Petra L. Schubert, MPH¹; Glen R. Gallagher PhD¹; Timelia Fink¹; Lawrence C. Madoff, MD¹; Stacey B. Gabriel, PhD³; Bronwyn MacInnis, PhD³; Daniel J. Park, PhD³; Katherine J. Siddle, PhD³; Vaira Harik, MS⁴; Deirdre Arvidson, MSN⁴; Taylor Brock-Fisher, MSc⁵; Molly Dunn, DVM⁵; Amanda Kearns⁵; A. Scott Laney, PhD²

Brown et al. MMWR / August 6, 2021 / Vol. 70 / No. 31

FIGURE 2. SARS-CoV-2 real-time reverse transcription–polymerase chain reaction cycle threshold values* for specimens from patients with infections associated with large public gatherings, by vaccination status† — Barnstable County, Massachusetts, July 2021§

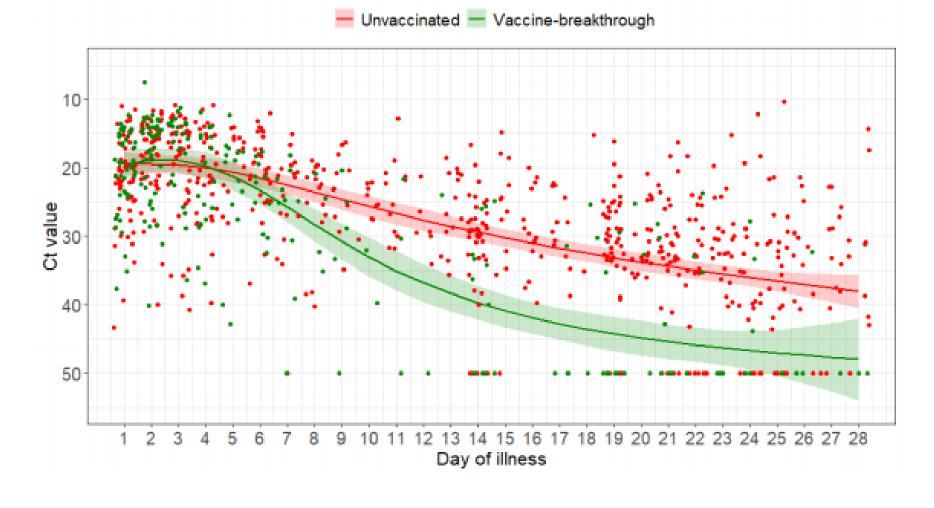
Geimpfte und Ungeimpfte haben dieselbe Viruslast wenn sie erkranken (Delta-Variante)

Brown et al. MMWR / August 6, 2021 / Vol. 70 / No. 31

Patient vaccination status

HOME | ABC

Search


Comments (15)

Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: a multi-center cohort study

Po Ying Chia, Sean Wei Xiang Ong, Calvin J Chiew, Li Wei Ang, Jean-Marc Chavatte, Tze-Minn Mak, Lin Cui, Shirin Kalimuddin, Wan Ni Chia, Chee Wah Tan, Louis Yi Ann Chai, Seow Yen Tan, Shuwei Zheng, Raymond Tzer Pin Lin, Linfa Wang, Yee-Sin Leo, Vernon J Lee, David Chien Lye, Barnaby Edward Young doi: https://doi.org/10.1101/2021.07.28.21261295

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

Die initiale Viruslast bei Geimpften nimmt aber schneller ab

Figure 1: Scatterplot of Ct values and marginal effect of day of illness of COVID-19 B1.617.2 infected patients with 95% confidence intervals from generalized additive mixed model with interaction term between vaccination status and day of illness

PY Chia et al. 2021

Lessons learned

Leitung/ Organisation Kommunikation/
Implementierung

Qualifiziertes Personal Infrastruktur/ Ausstattung

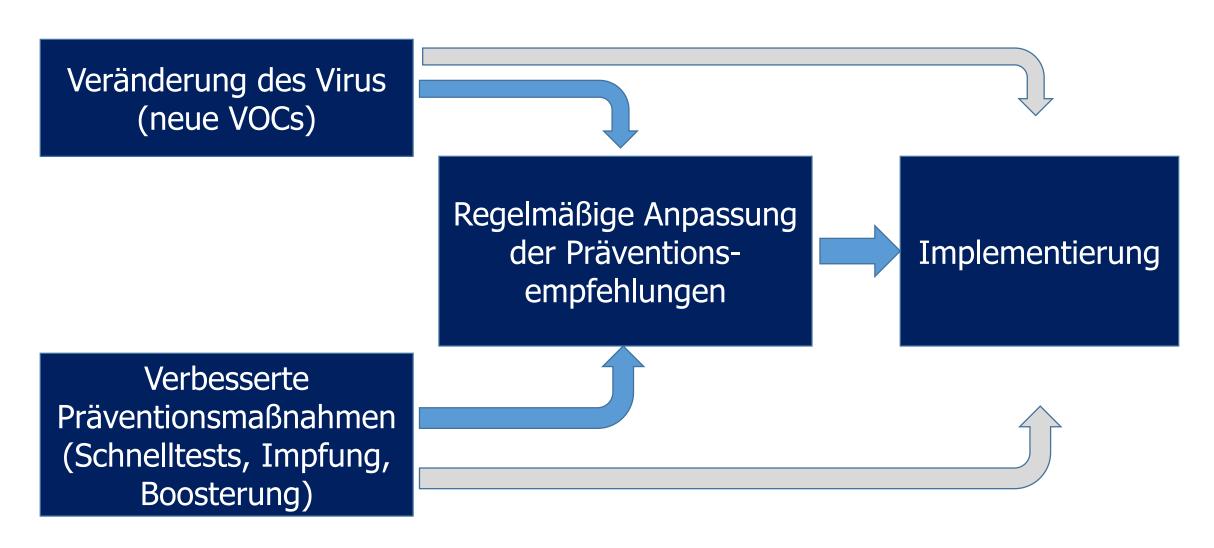

Lessons learned: Leitung/Organisation

- Geeigneten Pandemiestab definieren, engmaschige Treffen, klare Zuständigkeiten, kurzfristige Information aller relevanten Bereiche über deren Festlegungen, um schnelle Implementierung zu erreichen
- Der Pandemiestab/Hygiene muss jederzeit einen guten Überblick über die Datenlage im Krankenhaus haben (Patienten und Mitarbeiter) (Digitalisierung, Kontaktnachverfolgung, niederschwelliges Testen, Impfstatus, zentrales Surveillance-System bereitstellen etc.)
- An die Pandemie angepasstes Belegungsmanagement (COVID-Stationen/Ausschlussbetten/Nicht-COVID-Stationen)
- Krankenhaus als Schnittstelle zu externen Bereichen definieren (Pflegeheim, Besucher, externe Gäste)

Lessons learned: Kommunikation/Implementierung

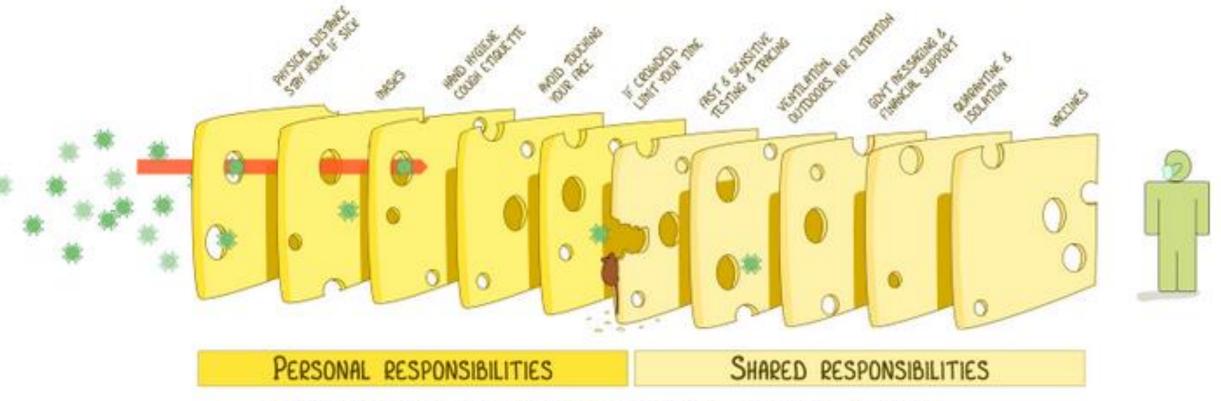
- Innerhalb der Einrichtung: verschiedene Wege nutzen (Intranet, Videobotschaften etc.) Änderungen nachvollziehbar, Begründungen Verbindlichkeit Schlüsselpersonen
- Von Labor zu Krankenhaus/Hygiene Laufzeiten, Zusatzinformationen (Viruslast, VOCs)
- Mit Gesundheitsämtern
 Unterschiedliche Vorgaben in Bezug auf Quarantäneregeln

Kommunikation an Patienten und Besucher


Lessons learned: Qualifiziertes Personal

- Ausreichend und gut aufeinander eingespieltes Personal
- Basis-Hygiene-Kompetenz
- Richtiges Tragen von Masken/Schutzbrillen, Fittesten

Lessons learned: Infrastruktur/Ausstattung


- Lagerhaltung verbessern: Masken, Desinfektionsmittel, regional/national/Autonomie
- Bauliche Situation der Krankenhäuser mehr Einzelzimmer, mehr separate Räume in Notaufnahmen, abtrennbare Isolierbereiche, zu viele zu kleine Räume (Pausenräume, Besprechungsräume etc.)
- RLT-Anlagen
 Patientenzimmer, Notaufnahme, Pausenräume, Besprechungsräume etc. ausrüsten

Die bleibende Herausforderung

THE SWISS CHEESE RESPIRATORY VIRUS PANDEMIC DEFENCE

RECOGNISING THAT NO SINGLE INTERVENTION IS PERFECT AT PREVENTING SPREAD

EACH INTERVENTION (LAYER) HAS IMPERFECTIONS (HOLES).

(MULTIPLE LAYERS IMPROVE SUCCESS.

www.virologydownunder.com

Kollateralschäden

- verschobene elektive Operationen
- vermiedene andere Kontakte zu Ärzten
- Besuchsverbote
- etc.

Original Article

The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network

Lindsey M. Weiner-Lastinger MPH¹ , Vaishnavi Pattabiraman MSc, MS, MPH^{1,2}, Rebecca Y. Konnor MPH^{1,3}, Prachi R. Patel MPH^{1,3}, Emily Wong MPH^{1,2}, Sunny Y. Xu MPH^{1,3}, Brittany Smith MPH^{1,4}, Jonathan R. Edwards MStat¹ and Margaret A. Dudeck MPH¹

¹Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, ²Leidos, Atlanta, Georgia, ³CACI, Atlanta, Georgia and ⁴Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee

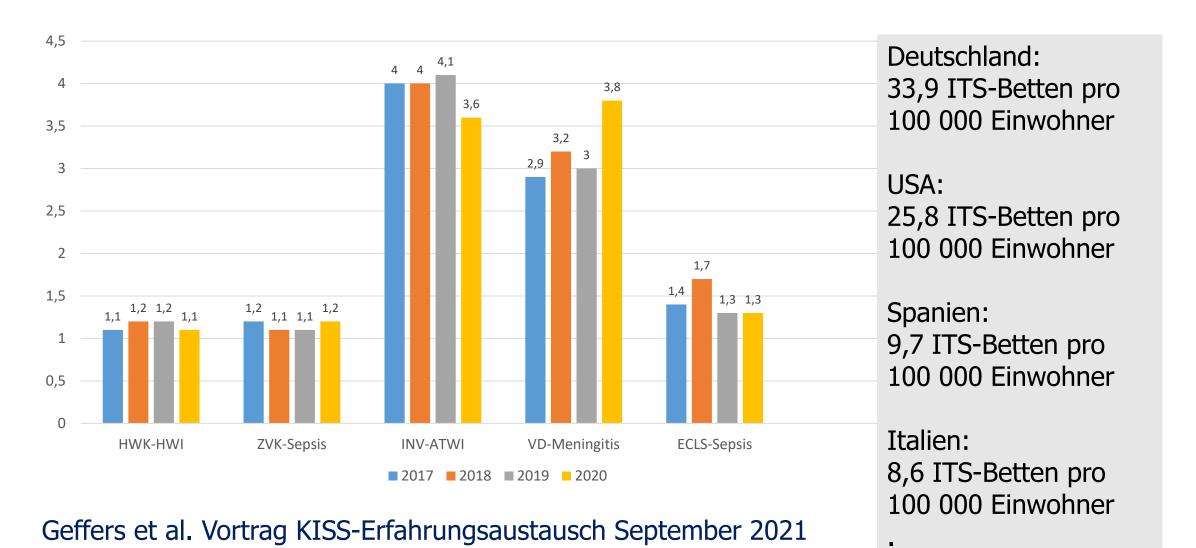
Daten von > 3000 Krankenhäusern

Veränderungen der nosokomialen Infektionsraten im CDC-NHSN in den Quartalen 2020 im Vergleich zu den Quartalen 2019

	2020 Q1	2020 Q2	2020 Q3	2020 Q4
CLABSI	-11.8%	27.9%	46.4%	1 47.0%
CAUTI	-21.3%	No Change ¹	12.7%	18.8%
VAE	11.3%	33.7%	29.0%	44.8%
SSI: Colon surgery	-9.1%	No Change ¹	-6.9%	-8.3%
SSI: Abdominal hysterectomy	-16.0%	No Change ¹	No Change ¹	-13.1%
Laboratory-identified MRSA bacteremia	-7.2%	12.2%	22.5%	33.8%
Laboratory-identified CDI	-17.5%	-10.3%	-8.8%	-5.5%

Weiner-Lastinger et al. ICHE 16. September 2021

MAJOR ARTICLE


The Impact of Coronavirus Disease 2019 (COVID-19) on Healthcare-Associated Infections

Meghan A. Baker,^{1,2,a} Kenneth E. Sands,^{1,3,a} Susan S. Huang,⁴ Ken Kleinman,⁵ Edward J. Septimus,^{1,6} Neha Varma,¹ Jackie Blanchard,³ Russell E. Poland,^{1,3} Micaela H. Coady,¹ Deborah S. Yokoe,⁷ Sarah Fraker,³ Allison Froman,¹ Julia Moody,³ Laurel Goldin,³ Amanda Isaacs,¹ Kacie Kleja,³ Kimberly M. Korwek,³ John Stelling,² Adam Clark,² Richard Platt,¹ and Jonathan B. Perlin³; For the CDC Prevention Epicenters Program

¹Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA; ²Brigham and Women's Hospital, Boston, Massachusetts, USA; ³HCA Healthcare, Nashville, Tennessee, USA; ⁴University of California Irvine School of Medicine, Orange, California, USA; ⁵University of Massachusetts Amherst, Amherst, Massachusetts, USA; ⁶Texas A&M College of Medicine, Houston, Texas, USA; and ⁷University of California San Francisco, California, USA

- Daten aus 148 US-Krankenhäusern (März bis Sept. 2020)
- 60 % mehr CLABSI
- 43 % mehr CAUTI
- 44 % mehr MRSA Bakeriämien
- Kein Anstieg bei CDI

Entwicklung in den KISS –Intensivstationen 2017-2020

